## Partial Dual and Delta-Matrix

Yile Huang

June 27, 2025

Huang, Keck, Mawalker

### A more combinatorial definition of ribbon graphs



Huang, Keck, Mawalkar

## A more combinatorial definition of ribbon graphs



Huang, Keck, Mawalkar



# $G = (V, E); A \subseteq E; G^{\delta(A)}.\{e\} \in \mathcal{E}\mathcal{F}\mathcal{G}\mathcal{E}^{(e)}_{\{e\}}$

Huang, Keck, Mawalkar



Huang, Keck, Mawalkar

|                       | Non-loop | Non-orientable loop | Orientable loop |
|-----------------------|----------|---------------------|-----------------|
| G                     |          | S.                  |                 |
| $G \backslash e$      | *        |                     |                 |
| $G/e = G^{\delta(e)}$ | \e       |                     | *               |
| $G^{\delta(e)}$       | C        |                     |                 |



Chun, C. and Moffatt, I. and Noble, Steven and Rueckriemen, R. (2018) On the interplay between embedded graphs and delta-matroids. Proceedings of the London Mathematical Society 118 (3), pp. 675-700. ISSN 0024-6115.

#### Partial Petrial

# $G = (V, E); A \subseteq E; G^{\tau(A)}.\{e\} \in E \mathcal{G} \mathcal{G}^{(e)}(e\})$



Huang, Keck, Mawalkar

▶ 《 트 ▶ 《 트 ▶ 트 · · · ○ Q (~ June 27, 2025

### Some Lemmas

(1) Suppose that an edge e does not belong to A, then  $G^{\delta(A \cup \{e\})} = (G^{\delta(A)})^{\delta(e)}$ (2)  $G = \left(G^{\delta(A)}\right)^{\delta(A)}$  $(3) \left( G^{\delta(A)} \right)^{\delta(B)} = G^{\delta(A \triangle B)}$  $(4) \ (G/e)^{\delta(A)} = G^{\delta(A \cup \{e\})} \backslash e$  $(5) \ (G \backslash e)^{\delta(A)} = G^{\delta(A \cup \{e\})} / e = G^{\delta(A)} \backslash e$ (6)  $G = \left(G^{\tau(A)}\right)^{\tau(A)}$ 

Huang, Keck, Mawalkar

June 27, 2025

# Spanning subgraph

*Definition*: Let G = (V, E) be a ribbon graph. G' is a Spanning subgraph of G iff G' = (V, E') with some  $E' \subseteq E$ .



# Spanning Quasi-tree

*Definition*: Let G = (V, E) be a ribbon graph, and let G' be a Spanning subgraph of G. If G' has exactly one boundary component, then G' is a *spanning quasi-tree* of G



### Delta-Matroid



*Definition*: A *delta-matroid* is a proper set system  $D = (E, \mathcal{F})$  that satisfies the Symmetric Exchange Axiom

Symmetric Exchange Axiom: For  $X, Y \in \mathcal{F}$ ; for  $\forall u \in X \bigtriangleup Y, \exists v \in X \bigtriangleup Y, s.t. X \bigtriangleup \{u, v\} \in \mathcal{F}$ 

### Delta-Matroid

Definition: Let G = (V, E) be a ribbon graph. And let  $\mathcal{F} := \{F \subseteq E | F \text{ is the edge set of a spanning quasi-tree of } G\}$ We call  $D(G) = (E, \mathcal{F})$  the *delta-matroid* of G.



Huang, Keck, Mawalkar

### Twist of Delta-Matroids

Definition: Let  $D = (E, \mathcal{F})$  be a set system. For  $A \subseteq E$ , the twist of D with respect to A, denoted by D \* A, is given by  $D * A = (E, \{A \bigtriangleup X | X \in \mathcal{F}\})$ 

Proposition: Let G = (V, E) be a ribbon graph, and  $A \subseteq E$ , then  $D(G) * A = D(G^{\delta(A)})$ 





Huang, Keck, Mawalkar



Huang, Keck, Mawalkar



#### *Proof (continued):*



Huang, Keck, Mawalkar

June 27, 2025

ъ

→ Ξ → → Ξ →

# A possible use of this proposition

$$G \setminus A \qquad G/A \qquad G^{\delta(A)}$$

$$(G) = \kappa(G \setminus e) + \kappa(G/e)$$

$$(G \setminus A = G^{\delta(A)} \setminus A \qquad |\mathcal{F}(D(G))|$$

$$= |\mathcal{F}(D(G \setminus e))| + |\mathcal{F}(D(G/e))|$$

$$D(G \setminus A) = D(G) \setminus A$$